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Structural Equation Modeling

Catherine M. Stein, Nathan J. Morris, and Nora L. Nock

Abstract

Structural equation modeling (SEM) is a multivariate statistical framework that is used to model complex
relationships between directly and indirectly observed (latent) variables. SEM is a general framework that
involves simultaneously solving systems of linear equations and encompasses other techniques such as
regression, factor analysis, path analysis, and latent growth curve modeling. Recently, SEM has gained
popularity in the analysis of complex genetic traits because it can be used to better analyze the relationships
between correlated variables (traits), to model genes as latent variables as a function of multiple observed
genetic variants, and assess the association between multiple genetic variants and multiple correlated
phenotypes of interest. Though the general SEM framework only allows for the analysis of independent
observations, recent work has extended SEM for the analysis of general pedigrees. Here, we review the
theory of SEM for both unrelated and family data, the available software for SEM, and provide an example
of SEM analysis.
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1. Introduction

Structural equation modeling (SEM) is a multivariate statistical
method that involves the estimation of parameters for a system of
simultaneous equations. SEM is a generalized framework that
includes regression analysis, pathway analysis, factor analysis, simul-
taneous econometric equations, and latent growth curve models, to
name a few (1). Here, we provide an overview of the methodology
behind the SEM framework, how this framework has been extended
to analyze related individuals, and currently available software that
can be used to conduct SEM analyses. After the overview,
we provide a step-by-step procedure for SEM analysis. Finally, we
provide some notes on challenges faced when performing these
types of analyses.
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1.1. Overview
of Methodology

SEM is used to estimate a system of linear equations to test the fit of
a hypothesized “causal” model. Thus, the first step involves visuali-
zing the hypothesizedmodel or creating a “path diagram” based on
prior knowledge and/or theories. In path diagrams, rectangles
represent observed or directly measured variables and circles/
ovals typically represent unobserved or latent constructs which are
defined by measured variables. Unidirectional arrows represent
causal paths, where one variable influences another directly, and
double-headed arrows represent correlations between variables.
Some prefer the term “arc” rather than “causal path” (2, 3).
Fig. 1 illustrates an example SEM model.

The system of equations can be written as a number of separate
equations or with a generalmatrix notation. SEMs comprise two sub-
models. First, the measurement model estimates relationships
between the observed variables, also referred to as indicators, and
latent variables; this is the same framework used in factor analysis.
Please note that here we use the word “indicator variable” in a very
different way than in typical statistical models. In regression and other
statistical theories, “indicator variable” implies a binary yes/no sort of
variable. Here, as is customary for SEM, “indicator variable” refers to
a variable that is directly associated with a latent variable such that
differences in the values of the latent variablemirror differences in the
value of the indicator (4). Second, the structural model develops the
relationships between the latent variables. For clarity of presentation,
here we describe the system of equations for this particular example.
The measurement model consists of the following equations, using
standard notation used by Bollen (1):

x1 ¼ l1x1 þ d1 y1 ¼ l3!1 þ e1
x2 ¼ l2x2 þ d2 y2 ¼ l4!1 þ e2
x3 ¼ l3x3 þ d3 y3 ¼ l5!1 þ e3;

where the x’s and y’s are observed indicators for latent variables, the
x’s and !’s are latent variables, the l’s are factor loadings, and the e’s
and d’s are error, or disturbance, terms. In general matrix notation,
the measurement model is written as

x ¼ Lxxþ d
y ¼ Ly! þ e:
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Fig. 1. Example SEM diagram.

496 C.M. Stein et al.



Using thepathdiagram, the arrowspoint to thex’s and y’s, so they
aremodeledasdependent variables.Also, note that the factor loadings
for x1 and y1 canbe set to1,which canbedone for two reasons: so that
the model is identifiable and so that the latent variable is on the same
statistical scale as the observed variables. Model identification, which
is discussed in further detail in Subheading2.1, can also be achieved in
other ways, such as setting the variance for the latent variable to 1.
Generally, the indicator with factor loading set to 1 is chosenbasedon
what the analyst deems is the best descriptor of the latent construct,
but can be arbitrary. Finally, we can differentiate between exogenous
variables, which have no directed arcs ending on them, and endoge-
nous variables, which have at least 1 arc ending on them.

The structural model consists of the following equations:

!1 ¼ g11x1 þ z1
!2 ¼ b21x2 þ z2;

where the g and b terms are factor loadings for the latent variables
and z’s are error terms. Here, we can evaluate causal relationships
between unobserved variables. In general, the structural model may
be rewritten in matrix form as the following:

! ¼ aþ B! þ Gxþ z;

where h is a m # 1 vector of latent endogenous variables, j is an
n # 1 vector of latent exogenous variables, a is anm # 1 vector of
intercept terms, B is an m # m matrix of coefficients that give the
influence ofh on each other,G is anm # nmatrix of the coefficients
of the effect of j onh, and z is them # 1 vector of disturbances that
contain the explained parts of the h’s. Though it may appear coun-
terintuitive to regress h on itself, each variable in hi is influenced by
other variables in hi, so this represents relationships between latent
variables and not necessarily feedback loops. We assume that «, d,
and z are mutually uncorrelated.

Traditional regression approaches are robust to measurement
errors in the outcome but not in the predictors. Also, univariate
regression approaches cannot model the correlation between error
terms for two different outcomes. SEM allows us to model measure-
ment error for both the predictor and the outcome, and it allows a
high degree of flexibility in modeling the correlation between the
various error terms. For example, if two of the indicators were lab
measurements assayed in one lab, while another two were measure-
ments conducted in another lab, the analyst could model the correla-
tion between the first pair of measurements separately from the
second pair. Also, the SEM allows for the decomposition of effects
if the direct and indirect effect of variables on the outcome is of
interest. For example, the direct effect of !1 on !2 is estimated by
b21, and the indirect effect of x1 on !2 is estimated by g11. Alterna-
tively, one could model the direct effect of x1 on !2 with the model
depicted in Fig. 2, with corresponding coefficient g12. More detail on
mediation models can be found elsewhere (5, 6).
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These models are estimated using the variance–covariance
matrix of the data. Usually, maximum likelihood estimation fitting
functions are used to fit the system of equations to the data, but this
method requires that the data be normally distributed and the
observations be independent. Variations that relax the assumption
of multivariate normality have been developed, including the
robust weighted least squares estimator (WLSMV), which allows
for binary and categorical dependent variables (7). To assess the
overall model fit, there are a number of fit statistics, including
the root mean squared error (RMSEA) and comparative fit index
(CFI) (1), and for categorical data, the weighted root mean square
residual (WRMR) is appropriate (8). Hu and Bentler (9) categorize
these fit statistics as “comparative” or “absolute.” One could also
compare nested models, as is done with traditional regression mod-
els and segregation analysis models, using a likelihood ratio test
(LRT) and non-nested models using Akaike’s AIC; by contrast, the
aforementioned fit statistics (RMSEA, CFI, WRMR, etc.) do not
require the models being compared to be nested.

1.2. SEM for Genetics As pointed out by Pearl (3), SEMwas first developed by geneticists.
Early models, developed by Sewall Wright (10), were called path
analysis. Later models were parameterized in very specific ways.
Twin pair data could be used for the estimation of the proportion
of variance due to additive genetic, dominance genetic, and shared
environmental effects (11), the so-called ACE models. Nuclear
family data could also be used for the estimation of additive genetic
and shared environmental variance, using the so-called Tau and
Beta models (12).

SEMis easily extended for the analysis of genetic and environmental
influences on traits. For example, genes may be modeled as unob-
served latent constructs with single nucleotide polymorphisms
(SNPs) as indicators of these gene constructs (13, 14). If the inves-
tigator has a specific polymorphism of interest, it may bemodeled as
an observed variable. Our work has shown that densely spaced SNPs

Fig. 2. Example SEM diagram, illustrating the addition of a direct effect in the model.
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are best for modeling latent gene constructs, and linkage disequilib-
rium (LD) between these SNPs may be modeled by correlating the
error terms within the measurement model (13).

Aword of caution is needed here regarding the selection of genes
or SNPs for analysis within a SEM framework. We emphasize that
SEM is a hypothesis-driven approach. Thus, it is not agnostic like
genome-scan approaches. In genome-wide searches for genes, the
analyst conducts linkage or association analysis without a biologic
model in mind. SEM is not amenable to this agnostic approach; the
implication here is that the model developer must have a set of genes
or biological pathways inmind.One approach is to select very specific
candidate genes, and only these genes are included in the model. If
genome-scan data are available, another approach is to take a two-
stage approach by first conducting association analysis between the
SNPs and the traits considered within the SEM (14). It should be
emphasized up front that while algorithmic model searching and
comparison may be useful, we do not advocate such an approach.
Instead, we believe that it is perfectly reasonable to start with a small
number of hypothesized models and compare them.

The above theory is applicable for independent observations.
Muthén has proposed using a robust maximum likelihood estimator
that provides test statistics and standard errors robust to nonindepen-
dence of observations (www.statmodel.com). However, in genetic
studies, we often have data collected from families, and it is preferable
to model the family structures explicitly. One approach to deal with
family relationships in SEM was proposed by Todorov et al. (15),
whose framework allowed for causal links between measured pheno-
types and could include linkage information. However, their
approach lacked an explicit measurement model for the traits and
was difficult to extend to general pedigrees.

We have developed a generalized framework for modeling
familial correlations for SEM (16). By using Kronecker notation,
this framework allows for incorporation of both a measurement and
structural model, as well as polygenic, environmental, and genetic
variance components within the SEM. This allows for linkage and
family-based association analyses to be conducted within a complex
modeling framework, and can be used to build and compare causal
models in family data with or without genetic marker data. Because
of the generalized framework of this model, it is easily extended to
sophisticated models such as latent growth curve models.

1.3. Software For general SEM analysis, there are a number of packages available
(summarized in Table 1). Of the packages that were not explicitly
designed to conduct genetic analyses, none are freely available.
Mplus does have the capability to conduct genetic analyses, but
they are not as general as those methods described above. For
example, SNP genotypes may be incorporated as observed vari-
ables, and there are special ways to conduct linkage analysis, but
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besides that, Mplus cannot currently be used for more sophisticated
genetic analyses. Another major consideration in the choice of
software is ease of use vs. capability. For example, Amos allows the
user to literally draw the SEM diagram that will be fitted, compared
to Mplus, which requires the user to write code. However, Mplus
may have additional capabilities in terms of specific algorithms and
user support. In addition, we recommend that Amos be used with
extreme caution, since it is too easy to draw a path diagram without
thinking through the parameterization, theoretical implications,
etc. A comparison of the most commonly used SEM software
packages is provided by Buhi et al. (17).

Currently there are two packages available that implement SEM
for genetic analysis. SEGPATH was originally developed for path
analysis for sibling pairs and has been extended to conduct segregation
analysis, linkage analysis, and interaction effects and analyze multiple
phenotypes simultaneously (18) using the method of Todorov et al.
(15). However, there are a few limitations of this software.

Table 1
Overview of available SEM software packages

Package Weblink or base package Notes

Amos Add-on to SPSS

Proc CALIS Procedure in SAS

EQS Multivariate software http://www.mvsoft.com/

GLLAMM Add-on to STATA: http://www.gllamm.org/

HYBALL http://web.psych.ualberta.ca/~rozeboom/ Free

LISREL http://www.ssicentral.com/index.html

Mplus http://www.statmodel.com/

Mx http://www.vcu.edu/mx/ Free
Best for twin data
Now has GUI

OpenMx http://openmx.psyc.virginia.edu/ Free R package—based on Mx

NEUSREL Uses MATLAB http://www.neusrel.com/

SYSTAT http://www.systat.com/products.aspx

Sem Package for R: http://socserv.socsci.mcmaster.ca/
jfox/Misc/sem/index.html

Free

SEGPATH Weblink broken! Free

SEPATH In Statistica: http://www.statsoft.com/products/
statistica-advanced-linear-non-linear-models/
itemid/5/

TETRAD http://www.phil.cmu.edu/projects/tetrad/ Free beta

List partially abstracted from Ed Rigdon’s Webpage: http://www2.gsu.edu/~mkteer/
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The likelihood formulation assumes multivariate normality, which
makes the analysis of binary or categorical traits impossible without
making important assumptions. Also, thoughProvince et al. (18) state
that their method has been extended to extended pedigrees, it is not
trivial to estimate polygenic effects for such pedigrees without making
other assumptions. Finally, at the time of this writing, the weblinks for
SEGPATHwere broken, so it is unknown whether this package is still
available or actively maintained. Second, Mx software (http://www.
vcu.edu/mx/) was originally developed for the analysis of twin data.
Recently, a graphic user interface (GUI) and R package version have
beenmade available, inwhich the user candrawSEMdiagrams, similar
to howAmos is used for general SEM. These recent developments are
quite important since the coding language for Mx is not intuitive and
rather difficult to implement without very specific examples. The Mx
GUI can be used for SEM analysis of general data (unrelated indivi-
duals) and twin data, but sibpair data and other general pedigrees
cannot be analyzed without extensive programming in the underlying
Mx script language.Mx is also limited to traits that followmultivariate
normality, though OpenMx can handle binary traits.

In addition, we are currently developing software for our own
methodology (16). Recall that our framework includes both a
measurement and structural model, allows for general pedigree
structures, and is generalizable for both genetic and general SEM
analyses. At the time of this writing, MATLAB code for our frame-
work is freely available by request from the authors. We are also
developing an R package for our method and will eventually release
a GUI version also.

2. Methods

As we described above, software for general SEM is not freely
available, and software for SEM with genetics has its limitations.
Here, we provide an example using Mplus. We also note that
genetics SEM packages will change in availability and functionality
in the next couple of years.

Below we provide a worked example using data from the 1000
Genomes Project (Pilot Project 3) generated for the Genetic
Analysis Workshop (GAW) held on October 17, 2010. We provide
the example worked into two parts. Part 1 (Model 1) shows how to
build the latent gene construct for one gene, and evaluate the gene’s
potential association on Q1, including potential effects
of covariates. Part 2 (Model 2) demonstrates how to simultaneously
model two genes, and evaluate their potential associations on Q1
(Fig. 1). In the following sections, we provide the Mplus v5.1 code
with annotations for the various steps embedded within the code
and highlight important findings in the subsequent discussion.
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2.1. Develop
the Model

SEM is a strongly hypothesis-driven analytical method. One danger
with methods like SEM is the temptation to fit all sorts of models
that have no grounding in biology or other scientific background.
That is why it is essential to develop amodel first. Draw the hypothe-
sized relationships. If there are several plausible models, draw them
all; in step #4, we will discuss how these models are compared.

There are several issues to keep in mind when developing the
model. The measurement model (factor analysis) should be fitted
first, followed by the structural model (2). First, as a general rule,
whenmodeling latent constructs, each latent variable requires at least
two observed indicator variables, but three is preferable (1); if there
are only two indicators, then the latent variable must be correlated
with another latent variable. This relates to the issue of model identi-
fication, which we will discuss subsequently. When conducting a
factor analysis, the factor loadings should form independent clusters
(2). Second, the analyst must bemindful of the default procedures of
the software being used. For example, many software packages auto-
matically estimate correlations between all latent variables. If the
analyst does not want this, he/she must specify the analysis appropri-
ately. Third, it is important to specify the disturbance/error terms
and the correlation between them. If disturbance terms are left out,
the assumption is made that the variable (xi or yi) is perfectly
measured. Fourth, many software packages are unable to validly
estimate parameters for binary or categorical dependent variables
(endogenous variables); more about this in Note 1. Those software
packages that can handle categorical outcomes have different compu-
tational approaches that should be considered.

Finally, one must consider how to parameterize the latent vari-
ables. There are a couple of approaches here. In one approach, the
analyst may select one indicator variable for which the factor loading
will be set to 1. The result of this will be that the variance of that latent
construct will be set to the variance of that specific indicator variable
but, at the same time, the importance of that variable to the latent
construct cannot be estimated, because there will not be a factor
loading. Alternatively, the analyst may fix the variance of the latent
variable to 1 and its mean to 0, which then allows factor loadings to
be estimated for all indicators. Both approaches are valid, and the
decision comes down to interpretation.

It is important to assess whether the model is identified.
Identification concerns whether it is possible to uniquely solve for
the model parameters in terms of the moments of the observed
variables using these equations. A SEM is identifiable if all of its
parameters can be determined uniquely from amean and covariance
structure. One quick test to assess model identification is to see if
each equation set by the model is a regression, and the covariance of
all disturbance variables is zero (2). Another step in this process is to
assign a scale to each latent variable that is measured with error. This
can be done by either choosing one indicator for each latent variable
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and setting the factor loading to 1 or setting the variance for the
latent variable. Evaluating the identification of a model is easier said
than done, and a full discussion of this topic is outside the scope of
this review. Bollen (1) provides algebraic arguments to assess model
identification, and Pearl (3) presents graphical arguments. Also, see
Note 1 for more on model identification.

2.2. Worked Example Briefly, the 1000 Genomes Project is an international, public–pri-
vate consortium aimed at building the most detailed map of human
genetic variation, with the overarching goal of improving our
understanding of the genetic contribution to common human
diseases. Initially launched in 2008, three pilot studies have been
completed to sequence the full genomes of 1,000 individuals in
order to identify rare variants in diverse populations. Pilot Project 3
involved sequencing the coding regions (exons) of 3,205 genes in
697 individuals from seven populations, which revealed 24,487
rare and common genetic variants. To illustrate the latent gene
construct SEM approach of Nock et al. (13, 14) using the GAW
17 data (unrelated subjects, Replicate 137), we selected two genes
(OR52E4: olfactory receptor, family 52, subfamily E, member 4;
OR2T3: olfactory receptor, family 2, subfamily T, member 3),
which are biologically related to each other. We focused on Q1 as
the phenotype because both OR52E4 and OR2T3 had at least one
SNP each that was associated with Q1 in Replicate 137. We have
taken a similar approach in our previous work (13, 14); sometimes
it is helpful to first do a standard association analysis to identify
SNPs associated with the trait(s) of interest, then include those
genes within the SEM. In this example, we demonstrate how to
model the variation in these genes with latent constructs using
multiple SNPs and how to evaluate the potential associations
of these genes on the simulated quantitative phenotype, Q1,
including the potential effects of covariates [age, sex, population
(pop1), and smoking] using Mplus v5.1 (Muthen and Muthen,
1998–2008, www.statmodel.com).

2.2.1. Prepare the Data Once themodel has been developed, the analyst can consider which
variables to be included in the dataset, and then, how the datafile
will be prepared. Many software packages accept typical flat files
with typical delimiters, with each variable in a separate column, and
each line of the file representing one individual subject’s data.
However, some software packages allow a covariance or correlation
matrix to be input as data.

For this example, Q1, sex, age, smoking status, Pop1, and SNP
genotypes for OR52E4 and OR2T3 were included in a comma-
delimited ($csv) file, which was then uploaded into Mplus. In the
Mplus code below, the data upload step can be seen in the “DATA:”
section. For coding SNP genotype data, we employed an additive
genetic model whereby SNPs were coded as 0, 1, or 2 for having
0, 1, or 2 copies of the variant (minor) allele, respectively.
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2.2.2. Assess First Model Next, the analyst can fit the first model. Model fit assessment has
two parts: overall fit and component fit (19). Again, each software
package differs in how the causal paths, correlations, and factor
analyses for latent variables are specified. Regardless of the software
package, after the model is fitted, a variety of statistics will be
output. These include pathway coefficients and corresponding p-
values, correlations, R2 for each indicator for a latent variable, and
model fit statistics that are based on maximum likelihood or
generalized least squares, such as the chi-square, AIC, BIC,
RMSEA, CFI, and other similar statistics. Further discussion of
assessment of global fit vs. comparison of nested models can be
found in the Subheading 1. In addition, model fit can also be
assessed by identification of “Heywood cases,” which are negative
estimates of variance (1). A word of caution: sometimes, with large
sample sizes, the power of significance tests based on the chi-square
is so great that even trivial departures lead to rejection of the null
hypothesis (19). On the other hand, indexes of model fit are for the
most part ad hoc. See refs. 20 and 21 for some interesting discus-
sions of these issues. Also see Note 2 for more on analysis of
categorical variables.

We provide the example worked into two parts. Part 1 (Model 1)
shows how to build the latent gene construct for one gene,OR52E4,
and evaluate the gene’s potential association onQ1, including poten-
tial effects of covariates. Part 2 (Model 2) demonstrates how to
simultaneouslymodel twogenes,OR52E4 andOR2T3, and evaluate
their potential associations on Q1 (Fig. 1). The following provides
the Mplus v5.1 code for the worked examples, with annotations for
the various steps embedded within the code.

Example: Part 1: OR52E4 Gene on Q1 Simulated Trait:

504 C.M. Stein et al.



27 Structural Equation Modeling 505



As expected, given the large sample size, the w2 test statistic is
statistically significant; however, given a CFI value of %0.90, an
RMSEA value &0.06, and a SRMR value &0.08, the overall fit of the
model is basically good (9). As such, Model 1 results are interpretable,
and we highlight that the standardized path coefficient of OR52E4 is
statistically significant, although its magnitude is less than that of age or
smoking. Furthermore, we note that this single gene model only explains
~0.15 of the variance in Q1.

2.2.3. Fit Other Models

and Compare

Once the analyst has examined the results of the first model, deci-
sions must be made on how to modify the model. This is the crux of
SEM modeling. The goal is to find the most plausible, best-fitting
model. When assessing changes to make to the initial model, a
variety of issues may be considered. Which path coefficients are
not statistically significant? Should they remain in themodel because
they are biologically or epidemiologically important? What other
relationships are worth examining—howwould these be depicted in
themodel?Once another model is fitted, another set of statistics will
be output as above (path coefficients, R2, and fit statistics).
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Specifically, the following statistical issues should be considered
when comparing models. Are the R2 values good? Do some indi-
cators of latent variables have lower R2 values and, if so, should
those be removed? Sometimes a path coefficient, though not statis-
tically significant by itself, may contribute to the overall fit of the
model, such that the inclusion of that variable results in a better
AIC, RMSEA, and/or CFI. Then it is up to the analyst which
model is “better.” It is then important to replicate findings in an
independent dataset (19).

Finally, we must comment about the modification of models
before arriving at one with the “best fit.” Wright (10) advocated
careful thought and prior knowledge for the comparison of alter-
native models. All models should be based on substantive theory
and causal conjectures (2). We and others (2, 3) recommend
against a “quasi-random walk” through a sequence of models and
instead promote theoretical justification of all models.

Example: If we add in another gene, OR2T3, which is biologically
related to OR52E4, to our first model, the fit of the model is
slightly better and the amount of variance explained in Q1 increases
to ~0.19.

Example: Part 2: OR2T3 and OR52E4 Genes on Q1 Simulated
Trait (Model 2)
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Although both gene constructs are significantly associated with
Q1 (Model 2), the magnitude of the path coefficient for OR2T3 is
larger than for OR52E4. It is also interesting to note that the path
coefficient of OR52E4 is attenuated when OR2T3 is included
(Model 2) compared to that when OR2T3 is not included
(Model 1). We can also see via the magnitude and significance of
the standardized coefficients that population structure (pop1) is
more influential on OR2T3 than on OR52E4.

2.2.4. Presentation

of “Final” Model

Once the best model has been selected, presenting it for publication
is also not trivial. Often, the path diagram is very complex, includ-
ing indicators for latent variables with corresponding factor load-
ings, correlations between all latent variables, and, of course, the
causal pathways. The authors will want to present P -values for each
path coefficient, and also some assessment of the goodness-of-fit of
the final model. Clearly, presentation of every model considered
with their fit statistics would be out of the question. The authors
should make every attempt to draw the path diagram simply and
clearly. One may consider listing factor loadings for latent variables
in a separate table, and providing correlations between latent vari-
ables in another table, so that the path diagram is not too cluttered.

McDonald and Ho (2) propose several guidelines for present-
ing SEM results in addition to those stated above. The report
should give theoretical grounds for the presence or absence of
each causal path (“arc”) in the model and also some discussion
about the use of causal pathways instead of correlations. If space
allows, the full covariance matrix of the observed variables should
be provided; if not, means and standard deviations of each variable
are sufficient. Also, the global w2 statistic should also be provided, in
addition to other fit statistics, such as RMSEA and CFI.

In Fig. 3, we present the final model (Model 2) from our
worked example. Here, we present SNPs in rectangles, genes as
ovals since they are modeled as latent variables and provide the
factor loadings'standard errors above the single-headed arrows
directed from the SNPs to the gene. Q1 is an observed continuous
trait, and thus is presented as a rectangle. Similarly, age, sex, and
smoking status are observed covariates, and thus represented by
rectangles. The correlation between OR52E4 and OR2T3 is repre-
sented by a double-headed arrow between the two latent variables.

3. Notes

1. As might be expected with models that include many pathways
and many variables, particularly many latent variables, model
convergence might be a problem. One thing to look at is the
existence of (phenotypic) outliers in the data. If there are
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outliers in the observed variables, the removal of these data-
points may enable the model to converge. In addition, model
over- or under-specification may result in problems with model
convergence. As stated before, evaluating the identification of
the model is difficult. If faced with this concern, it is best to
draw the model, then write out the simultaneous equations
evaluated within the model, and then apply the aforementioned
rules described by Bollen (1) to assess identification. A final
method to increase model convergence is to increase the sam-
ple size. Since SEM is really the estimation of simultaneous
regression equations, a similar rule of thumb may be applied: at
least 20 observations per variable are recommended, but more
is better.

2. The analysis of binary or categorical traits is not trivial. Most of
the original SEM methodology was developed for quantitative
traits and made the assumption of multivariate normality and
linear causal effects. The so-called “Asymptotic Distribution
Free” approach to model fitting relaxes the assumption of mul-
tivariate normality.However, it does not relax the assumption of
linearity, and it has been shown that in finite samples, its behav-
ior is quite poor (22). Numerousmethods have been developed
that explicitly model categorical traits using a threshold model.
That is, it is assumed that an underlying quantitative

Fig. 3. Modeling the aggregate effects of common and rare variants in multiple potentially interesting genes using latent
variable SEM. Model of the associations between two genes (11 SNPs) and potential associations with Q1 (CFI ¼ 0.91;
RMSEA ¼ 0.04; SRMR ¼ 0.03). Standardized loadings and standard errors are shown above the arrows. *p & 0.05;
**p & 0.01. Residuals are not shown for clarity.
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multivariate normal trait exists which belongs to a specific cate-
gory if it falls into a specific range. Some software packages such
as Mplus, GLLAMM, and OpenMx support such explicit mod-
els for various types of categorical traits. For instance, the MLR
estimator in Mplus is robust to non-normality and can be used
for categorical variables. In general, we recommend that mode-
lers who have categorical traits avoid using software that does
not support an explicit model for such categorical traits.
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